Approved-online-essay-writers

College AlgebraAnswers 3Bids 1Other questions 10

We Write Essays for Students

Tell us about your assignment and we will find the best writer for your paper

Get Help Now!

Hello,The current answers are incorrect and I need the corrected answers. Thanks, 1. Solve the following system of equations using matrices. Use Gaussian elimination with back substitution or Gauss-Jordan elimination.x – 2y + z = 0  y – 3z = -1  2y + 5z = -2   [removed] A. {(-1, -2, 0)} [removed] B. {(-2, -1, 0)} [removed] C. {(-5, -3, 0)} [removed] D. {(-3, 0, 0)}  2. Solve the following system of equations using matrices. Use Gaussian elimination with back substitution or Gauss-Jordan elimination. 2x – y – z = 4  x + y – 5z = -4  x – 2y = 4   [removed] A. {(2, -1, 1)} [removed] B. {(-2, -3, 0)} [removed] C. {(3, -1, 2)} [removed] D. {(3, -1, 0)}      3. Find the products AB and BA to determine whether B is the multiplicative inverse of A. A =0 0 11 0   00 1   0 B =0 1 00 0   11 0   0   [removed] A. AB = I; BA = I3; B = A [removed] B. AB = I3; BA = I3; B = A-1 [removed] C. AB = I; AB = I3; B = A-1 [removed] D. AB = I3; BA = I3; A = B-1  4. Use Cramer’s Rule to solve the following system.2x = 3y + 2  5x = 51 – 4y   [removed] A. {(8, 2)} [removed] B. {(3, -4)} [removed] C. {(2, 5)} [removed] D. {(7, 4)} 5. Use Gaussian elimination to find the complete solution to the following system of equations, or show that none exists. 2w + x – y = 3  w – 3x + 2y = -4  3w + x – 3y + z = 1  w + 2x – 4y – z = -2   [removed] A. {(1, 3, 2, 1)} [removed] B. {(1, 4, 3, -1)} [removed] C. {(1, 5, 1, 1)} [removed] D. {(-1, 2, -2, 1)}    6. Solve the following system of equations using matrices. Use Gaussian elimination with back substitution or Gauss-Jordan elimination. x + 2y = z – 1  x = 4 + y – z  x + y – 3z = -2   [removed] A. {(3, -1, 0)} [removed] B. {(2, -1, 0)} [removed] C. {(3, -2, 1)} [removed] D. {(2, -1, 1)}  7. Use Gauss-Jordan elimination to solve the system.-x – y – z = 1  4x + 5y = 0  y – 3z = 0   [removed] A. {(14, -10, -3)} [removed] B. {(10, -2, -6)} [removed] C. {(15, -12, -4)} [removed] D. {(11, -13, -4)}  8. Use Gaussian elimination to find the complete solution to the following system of equations, or show that none exists. w – 2x – y – 3z = -9  w + x – y = 0  3w + 4x + z = 6  2x – 2y + z = 3   [removed] A. {(-1, 2, 1, 1)} [removed] B. {(-2, 2, 0, 1)} [removed] C. {(0, 1, 1, 3)} [removed] D. {(-1, 2, 1, 1)}  9. Use Gaussian elimination to find the complete solution to the following system of equations, or show that none exists. 8x + 5y + 11z = 30  -x – 4y + 2z = 3  2x – y + 5z = 12   [removed] A. {(3 – 3t, 2 + t, t)} [removed] B. {(6 – 3t, 2 + t, t)} [removed] C. {(5 – 2t, -2 + t, t)} [removed] D. {(2 – 1t, -4 + t, t)}  10. Solve the following system of equations using matrices. Use Gaussian elimination with back substitution or Gauss-Jordan elimination. x + y + z = 4  x – y – z = 0  x – y + z = 2   [removed] A. {(3, 1, 0)} [removed] B. {(2, 1, 1)} [removed] C. {(4, 2, 1)} [removed] D. {(2, 1, 0)}  11. Use Cramer’s Rule to solve the following system.  x + y = 7  x – y = 3   [removed] A. {(7, 2)} [removed] B. {(8, -2)} [removed] C. {(5, 2)} [removed] D. {(9, 3)}  12. Solve the following system of equations using matrices. Use Gaussian elimination with back substitution or Gauss-Jordan elimination.  3×1 + 5×2 – 8×3 + 5×4 = -8  x1 + 2×2 – 3×3 + x4 = -7  2×1 + 3×2 – 7×3 + 3×4 = -11  4×1 + 8×2 – 10×3+ 7×4 = -10   [removed] A. {(1, -5, 3, 4)} [removed] B. {(2, -1, 3, 5)} [removed] C. {(1, 2, 3, 3)} [removed] D. {(2, -2, 3, 4)}  13. Use Cramer’s Rule to solve the following system.  4x – 5y = 17  2x + 3y = 3   [removed] A. {(3, -1)} [removed] B. {(2, -1)} [removed] C. {(3, -7)} [removed] D. {(2, 0)}  14. Use Gaussian elimination to find the complete solution to each system.x – 3y + z = 1  -2x + y + 3z = -7  x – 4y + 2z = 0   [removed] A. {(2t + 4, t + 1, t)} [removed] B. {(2t + 5, t + 2, t)} [removed] C. {(1t + 3, t + 2, t)} [removed] D. {(3t + 3, t + 1, t)}  15. Use Gaussian elimination to find the complete solution to the following system of equations, or show that none exists. 5x + 8y – 6z = 14  3x + 4y – 2z = 8  x + 2y – 2z = 3   [removed] A. {(-4t + 2, 2t + 1/2, t)} [removed] B. {(-3t + 1, 5t + 1/3, t)} [removed] C. {(2t + -2, t + 1/2, t)} [removed] D. {(-2t + 2, 2t + 1/2, t)}  16. Solve the system using the inverse that is given for the coefficient matrix.2x + 6y + 6z = 8 2x + 7y + 6z =10 2x + 7y + 7z = 9 The inverse of:2 2 2  6 7 7  6 6 7 is7/2 -1 0  0 1 -1  -3 0 1   [removed] A. {(1, 2, -1)} [removed] B. {(2, 1, -1)} [removed] C. {(1, 2, 0)} [removed] D. {(1, 3, -1)}  17. Use Cramer’s Rule to solve the following system.4x – 5y – 6z = -1  x – 2y – 5z = -12  2x – y = 7   [removed] A. {(2, -3, 4)} [removed] B. {(5, -7, 4)} [removed] C. {(3, -3, 3)} [removed] D. {(1, -3, 5)}  18. Find the solution set for each system by finding points of intersection.x2 + y2 = 1  x2 + 9y = 9   [removed] A. {(0, -2), (0, 4)} [removed] B. {(0, -2), (0, 1)} [removed] C. {(0, -3), (0, 1)} [removed] D. {(0, -1), (0, 1)}   19. Find the standard form of the equation of the ellipse satisfying the given conditions. Endpoints of major axis: (7, 9) and (7, 3)  Endpoints of minor axis: (5, 6) and (9, 6)  [removed] A. (x – 7)2/6 + (y – 6)2/7 = 1 [removed] B. (x – 7)2/5 + (y – 6)2/6 = 1 [removed] C. (x – 7)2/4 + (y – 6)2/9 = 1 [removed] D. (x – 5)2/4 + (y – 4)2/9 = 1   20. Find the vertex, focus, and directrix of each parabola with the given equation. (x + 1)2 = -8(y + 1)  [removed] A. Vertex: (-1, -2); focus: (-1, -2); directrix: y = 1 [removed] B. Vertex: (-1, -1); focus: (-1, -3); directrix: y = 1 [removed] C. Vertex: (-3, -1); focus: (-2, -3); directrix: y = 1 [removed] D. Vertex: (-4, -1); focus: (-2, -3); directrix: y = 1  21. Find the vertex, focus, and directrix of each parabola with the given equation. (x + 1)2 = -8(y + 1)  [removed] A. Vertex: (-1, -2); focus: (-1, -2); directrix: y = 1 [removed] B. Vertex: (-1, -1); focus: (-1, -3); directrix: y = 1 [removed] C. Vertex: (-3, -1); focus: (-2, -3); directrix: y = 1 [removed] D. Vertex: (-4, -1); focus: (-2, -3); directrix: y = 1  22. Find the standard form of the equation of each hyperbola satisfying the given conditions. Foci: (-4, 0), (4, 0) Vertices: (-3, 0), (3, 0)  [removed] A. x2/4 – y2/6 = 1 [removed] B. x2/6 – y2/7 = 1 [removed] C. x2/6 – y2/7 = 1 [removed] D. x2/9 – y2/7 = 1  23. Locate the foci of the ellipse of the following equation. x2/16 + y2/4 = 1  [removed] A. Foci at (-2√3, 0) and (2√3, 0) [removed] B. Foci at (5√3, 0) and (2√3, 0) [removed] C. Foci at (-2√3, 0) and (5√3, 0) [removed] D. Foci at (-7√2, 0) and (5√2, 0)  24. Locate the foci and find the equations of the asymptotes.   x2/9 – y2/25 = 1  [removed] A. Foci: ({±√36, 0) ;asymptotes: y = ±5/3x [removed] B. Foci: ({±√38, 0) ;asymptotes: y = ±5/3x [removed] C. Foci: ({±√34, 0) ;asymptotes: y = ±5/3x [removed] D. Foci: ({±√54, 0) ;asymptotes: y = ±6/3x  25. Find the standard form of the equation of each hyperbola satisfying the given conditions. Foci: (0, -3), (0, 3) Vertices: (0, -1), (0, 1)  [removed] A. y2 – x2/4 = 0 [removed] B. y2 – x2/8 = 1 [removed] C. y2 – x2/3 = 1 [removed] D. y2 – x2/2 = 0  26. Convert each equation to standard form by completing the square on x and y. 4×2 + y2 + 16x – 6y – 39 = 0  [removed] A. (x + 2)2/4 + (y – 3)2/39 = 1 [removed] B. (x + 2)2/39 + (y – 4)2/64 = 1 [removed] C. (x + 2)2/16 + (y – 3)2/64 = 1 [removed] D. (x + 2)2/6 + (y – 3)2/4 = 1  27. Find the standard form of the equation of the following ellipse satisfying the given conditions.  Foci: (-5, 0), (5, 0) Vertices: (-8, 0), (8, 0)  [removed] A. x2/49 + y2/ 25 = 1 [removed] B. x2/64 + y2/39 = 1 [removed] C. x2/56 + y2/29 = 1 [removed] D. x2/36 + y2/27 = 1  28. Find the focus and directrix of each parabola with the given equation. x2 = -4y  [removed] A. Focus: (0, -1), directrix: y = 1 [removed] B. Focus: (0, -2), directrix: y = 1 [removed] C. Focus: (0, -4), directrix: y = 1 [removed] D. Focus: (0, -1), directrix: y = 2  29. Find the vertex, focus, and directrix of each parabola with the given equation. (y + 1)2 = -8x  [removed] A. Vertex: (0, -1); focus: (-2, -1); directrix: x = 2 [removed] B. Vertex: (0, -1); focus: (-3, -1); directrix: x = 3 [removed] C. Vertex: (0, -1); focus: (2, -1); directrix: x = 1 [removed] D. Vertex: (0, -3); focus: (-2, -1); directr

The post College AlgebraAnswers 3Bids 1Other questions 10 appeared first on top grade professors.

Source link

 

“Looking for a Similar Assignment? Order now and Get 10% Discount! Use Code “Newclient”

The post College AlgebraAnswers 3Bids 1Other questions 10 appeared first on Top Grade Professors.

Welcome to originalessaywriters.com, our friendly and experienced essay writers are available 24/7 to complete all your assignments. We offer high-quality academic essays written from scratch to guarantee top grades to all students. All our papers are 100% plagiarism-free and come with a plagiarism report, upon request

Tell Us “Write My Essay for Me” and Relax! You will get an original essay well before your submission deadline.

PLACE YOUR ORDER